Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Clin Proteomics ; 20(1): 13, 2023 Mar 27.
Article in English | MEDLINE | ID: covidwho-2262926

ABSTRACT

BACKGROUND: SARS-CoV-2 has been shown to predominantly infect the airways and the respiratory tract and too often have an unpredictable and different pathologic pattern compared to other respiratory diseases. Current clinical diagnostical tools in pulmonary medicine expose patients to harmful radiation, are too unspecific or even invasive. Proteomic analysis of exhaled breath particles (EBPs) in contrast, are non-invasive, sample directly from the pathological source and presents as a novel explorative and diagnostical tool. METHODS: Patients with PCR-verified COVID-19 infection (COV-POS, n = 20), and patients with respiratory symptoms but with > 2 negative polymerase chain reaction (PCR) tests (COV-NEG, n = 16) and healthy controls (HCO, n = 12) were prospectively recruited. EBPs were collected using a "particles in exhaled air" (PExA 2.0) device. Particle per exhaled volume (PEV) and size distribution profiles were compared. Proteins were analyzed using liquid chromatography-mass spectrometry. A random forest machine learning classification model was then trained and validated on EBP data achieving an accuracy of 0.92. RESULTS: Significant increases in PEV and changes in size distribution profiles of EBPs was seen in COV-POS and COV-NEG compared to healthy controls. We achieved a deep proteome profiling of EBP across the three groups with proteins involved in immune activation, acute phase response, cell adhesion, blood coagulation, and known components of the respiratory tract lining fluid, among others. We demonstrated promising results for the use of an integrated EBP biomarker panel together with particle concentration for diagnosis of COVID-19 as well as a robust method for protein identification in EBPs. CONCLUSION: Our results demonstrate the promising potential for the use of EBP fingerprints in biomarker discovery and for diagnosing pulmonary diseases, rapidly and non-invasively with minimal patient discomfort.

2.
Infect Dis (Lond) ; : 1-6, 2022 Nov 04.
Article in English | MEDLINE | ID: covidwho-2227410

ABSTRACT

BACKGROUND: SARS-CoV-2 in exhaled aerosols is considered an important contributor to the spread of COVID-19. However, characterizing the size distribution of virus-containing aerosol particles has been challenging as high concentrations of SARS-CoV-2 in exhaled air is mainly present close to symptom onset. We present a case study of a person with COVID-19 who was able to participate in extensive measurements of exhaled aerosols already on the day of symptom onset and then for the following three days. METHODS: Aerosol collection was performed using an eight-stage impactor while the subject was breathing, talking and singing, for 30 min each, once every day. In addition, nasopharyngeal samples, saliva samples, room air samples and information on symptom manifestations were collected every day. Samples were analyzed by RT-qPCR for detection of SARS-CoV-2 RNA. RESULTS: SARS-CoV-2 RNA was detected in seven of the eight particle size fractions, from 0.34 to >8.1 µm, with the highest concentrations found in 0.94-2.8 µm particles. The concentration of SARS-CoV-2 RNA was highest on the day of symptom onset, and declined for each day thereafter. CONCLUSION: Our data showed that 90% of the exhaled SARS-CoV-2 RNA was found in aerosol particles <4.5 µm, indicating the importance of small particles for the transmission of COVID-19 close to symptom onset. These results are important for our understanding of airborne transmission, for developing accurate models and for selecting appropriate mitigation strategies.

4.
Clin Infect Dis ; 75(1): e89-e96, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1868254

ABSTRACT

BACKGROUND: Transmission of coronavirus disease 2019 (COVID-19) can occur through inhalation of fine droplets or aerosols containing infectious virus. The objective of this study was to identify situations, patient characteristics, environmental parameters, and aerosol-generating procedures (AGPs) associated with airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. METHODS: Air samples were collected near hospitalized COVID-19 patients and analyzed by RT-qPCR. Results were related to distance to the patient, most recent patient diagnostic PCR cycle threshold (Ct) value, room ventilation, and ongoing potential AGPs. RESULTS: In total, 310 air samples were collected; of these, 26 (8%) were positive for SARS-CoV-2. Of the 231 samples from patient rooms, 22 (10%) were positive for SARS-CoV-2. Positive air samples were associated with a low patient Ct value (OR, 5.0 for Ct <25 vs >25; P = .01; 95% CI: 1.18-29.5) and a shorter physical distance to the patient (OR, 2.0 for every meter closer to the patient; P = .05; 95% CI: 1.0-3.8). A mobile HEPA-filtration unit in the room decreased the proportion of positive samples (OR, .3; P = .02; 95% CI: .12-.98). No association was observed between SARS-CoV-2-positive air samples and mechanical ventilation, high-flow nasal cannula, nebulizer treatment, or noninvasive ventilation. An association was found with positive expiratory pressure training (P < .01) and a trend towards an association for airway manipulation, including bronchoscopies and in- and extubations. CONCLUSIONS: Our results show that major risk factors for airborne SARS-CoV-2 include short physical distance, high patient viral load, and poor room ventilation. AGPs, as traditionally defined, seem to be of secondary importance.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitals , Humans , Physical Distancing , Respiratory Aerosols and Droplets , Viral Load
5.
Clin Infect Dis ; 75(1): e50-e56, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1735550

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) transmission via exhaled aerosol particles has been considered an important route for the spread of infection, especially during super-spreading events involving loud talking or singing. However, no study has previously linked measurements of viral aerosol emissions to transmission rates. METHODS: During February-March 2021, COVID-19 cases that were close to symptom onset were visited with a mobile laboratory for collection of exhaled aerosol particles during breathing, talking, and singing, respectively, and of nasopharyngeal and saliva samples. Aerosol samples were collected using a BioSpot-VIVAS and a NIOSH bc-251 2-stage cyclone, and all samples were analyzed by RT-qPCR for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA detection. We compared transmission rates between households with aerosol-positive and aerosol-negative index cases. RESULTS: SARS-CoV-2 RNA was detected in at least 1 aerosol sample from 19 of 38 (50%) included cases. The odds ratio (OR) of finding positive aerosol samples decreased with each day from symptom onset (OR 0.55, 95 confidence interval [CI] .30-1.0, P = .049). The highest number of positive aerosol samples were from singing, 16 (42%), followed by talking, 11 (30%), and the least from breathing, 3 (8%). Index cases were identified for 13 households with 31 exposed contacts. Higher transmission rates were observed in households with aerosol-positive index cases, 10/16 infected (63%), compared to households with aerosol-negative index cases, 4/15 infected (27%) (χ2 test, P = .045). CONCLUSIONS: COVID-19 cases were more likely to exhale SARS-CoV-2-containing aerosol particles close to symptom onset and during singing or talking as compared to breathing. This study supports that individuals with SARS-CoV-2 in exhaled aerosols are more likely to transmit COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Family Characteristics , Humans , RNA, Viral , Respiratory Aerosols and Droplets
6.
Emerg Infect Dis ; 28(3): 564-571, 2022 03.
Article in English | MEDLINE | ID: covidwho-1700805

ABSTRACT

We report on local nowcasting (short-term forecasting) of coronavirus disease (COVID-19) hospitalizations based on syndromic (symptom) data recorded in regular healthcare routines in Östergötland County (population ≈465,000), Sweden, early in the pandemic, when broad laboratory testing was unavailable. Daily nowcasts were supplied to the local healthcare management based on analyses of the time lag between telenursing calls with the chief complaints (cough by adult or fever by adult) and COVID-19 hospitalization. The complaint cough by adult showed satisfactory performance (Pearson correlation coefficient r>0.80; mean absolute percentage error <20%) in nowcasting the incidence of daily COVID-19 hospitalizations 14 days in advance until the incidence decreased to <1.5/100,000 population, whereas the corresponding performance for fever by adult was unsatisfactory. Our results support local nowcasting of hospitalizations on the basis of symptom data recorded in routine healthcare during the initial stage of a pandemic.


Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , Delivery of Health Care , Forecasting , Hospitalization , Humans , SARS-CoV-2 , Sweden/epidemiology
7.
MEDLINE; 2020.
Non-conventional in English | MEDLINE | ID: grc-750549
8.
Infect Dis (Lond) ; 53(9): 707-712, 2021 09.
Article in English | MEDLINE | ID: covidwho-1223278

ABSTRACT

BACKGROUND: Nosocomial outbreaks of coronavirus disease 2019 (COVID-19) can have devastating consequences from both a resource cost and patient healthcare perspective. Relying on reverse transcription-polymerase chain reaction (RT-PCR) for identifying infected individuals may result in missed cases. Screening for antibodies after an outbreak can help to find missed cases and better illuminate routes of transmission. METHODS: In this study, we present the results of a serological screening of the healthcare workers (HCWs) on a ward for infectious diseases in Sweden with a point-of-care antibody test 8 weeks after an outbreak of COVID-19. In all, 107/123 (87%) of HCWs who were tested with RT-PCR in the outbreak investigation participated in this study on seroprevalence. Participants were also asked to fill out a questionnaire entailing epidemiological data. The cohort was stratified by RT-PCR result and the resulting groups were compared to each other. RESULTS: Six (8%) HCWs who were tested RT-PCR negative during the outbreak investigation had developed specific IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These HCWs had all worked shifts with colleagues who later were tested RT-PCR positive during the outbreak. CONCLUSIONS: Our results indicate that a serological follow-up screening after an outbreak may be used as a complement to virus detection in an outbreak situation. However, immunoglobulin (Ig) G-detection should also be performed at the start of an outbreak, to facilitate interpretation of the results.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Disease Outbreaks , Health Personnel , Humans , Seroepidemiologic Studies , Sweden/epidemiology
9.
Infect Dis (Lond) ; 53(6): 460-468, 2021 06.
Article in English | MEDLINE | ID: covidwho-1124479

ABSTRACT

BACKGROUND: In health care workers SARS-CoV-2 has been shown to be an occupational health risk, often associated with transmission between health care workers. Yet, insufficient information on transmission dynamics has been presented to elucidate the precise risk factors for contracting SARS-CoV-2 in this group. METHODS: In this cross-sectional study, we investigated association between questionnaire answers on potential exposure situations and SARS-CoV-2-positivity. Health care workers with and without COVID-19-patient contact at nine units at Skåne University Hospitals in Malmö and Lund, Sweden and university employees from Lund University, Sweden were enrolled. To limit impact of health care worker to health care worker transmission, units with known outbreaks were excluded. A SARS-CoV-2-positive case was defined by a previous positive PCR or anti-SARS-CoV-2 IgG in the ZetaGene COVID-19 Antibody Test. RESULTS: SARS-CoV-2-positivity was detected in 11/51 (22%) health care workers in COVID-19-units, 10/220 (5%) in non-COVID-19-units and 11/192 (6%) University employees (p = .001, Fischer's exact). In health care workers, SARS-CoV-2-positivity was associated with work in a designated COVID-19-unit (OR 5.7 (95CI 2.1-16)) and caring for COVID-19-patients during the majority of shifts (OR 5.4 (95CI 2.0-15)). In all participants, SARS-CoV-2-positivity was associated with a confirmed COVID-19 case (OR 10 (95CI 2.0-45)) in the household. CONCLUSION: Our study confirmed previous findings of elevated risk of acquiring SARS-CoV-2 in health care workers in COVID-19-units, despite exclusion of units with known outbreaks. Interestingly, health care workers in non-COVID-19-units had similar risk as University employees. Further measures to improve the safety of health care workers might be needed.KEY POINTSPrevious findings of elevated risk of contracting SARS-CoV-2 in health care workers with COVID-19 patient contact was confirmed, despite exclusion of wards with known SARS-CoV-2 outbreaks. Further measures to improve the safety of health care workers might be needed.


Subject(s)
COVID-19 , SARS-CoV-2 , Cross-Sectional Studies , Health Personnel , Humans , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL